Python Code Generator (Free AI Tool)

AI-powered Python code generator. Convert plain English descriptions to production-ready Python code instantly. Generate functions, classes, data analysis scripts, web scrapers, API clients. PEP 8 compliant with type hints and docstrings.

AI Code Generator
Tools
INPUT
0 chars • 1 lines
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
OUTPUT
0 chars • 1 lines
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Hint: Describe what you want to build or paste requirements, select target language, and click Generate.

We never store your code

How It Works

  1. 1

    Describe Your Code Need

    Write plain English description: Create a Flask API endpoint that accepts JSON, validates email format, saves to PostgreSQL using SQLAlchemy, and returns 201 status or error messages.

  2. 2

    AI Generates Python Code

    Advanced AI analyzes requirements and generates complete Python code with proper imports, type hints, docstrings following PEP 257, error handling with try-except blocks, and framework-specific patterns.

  3. 3

    Copy Production-Ready Code

    Get PEP 8 compliant code with type annotations, comprehensive docstrings, proper exception handling, context managers for resources, and best practice patterns ready for immediate use.

Manual Coding vs AI Generation

Feature Manual Python Coding AI Code Generation
Speed Hours to write Seconds to generate
Boilerplate Manual typing Auto-generated
Best Practices Varies by skill Always applied
Documentation Often skipped Included automatically
Type Hints May forget Always included
Error Handling Sometimes missed Comprehensive

Examples

Example 1: Data Analysis Function

Description Input
Plain English:
"Create a function that reads a CSV file using pandas,
filters rows where age is above 25, calculates the average
salary, and returns the result with proper error handling."
Generated Python Output
import pandas as pd
from pathlib import Path
from typing import Optional

def calculate_average_salary(file_path: str, age_threshold: int = 25) -> Optional[float]:
    """
    Calculate average salary for people above specified age.
    
    Args:
        file_path: Path to CSV file containing age and salary columns
        age_threshold: Minimum age to include (default: 25)
    
    Returns:
        Average salary as float, or None if no matching records
    
    Raises:
        FileNotFoundError: If CSV file does not exist
        ValueError: If required columns are missing
    """
    try:
        # Validate file exists
        if not Path(file_path).exists():
            raise FileNotFoundError(f"CSV file not found: {file_path}")
        
        # Read CSV with pandas
        df = pd.read_csv(file_path)
        
        # Validate required columns
        required_cols = ["age", "salary"]
        missing_cols = set(required_cols) - set(df.columns)
        if missing_cols:
            raise ValueError(f"Missing columns: {missing_cols}")
        
        # Filter by age and calculate average
        filtered_df = df[df["age"] > age_threshold]
        
        if filtered_df.empty:
            return None
        
        return float(filtered_df["salary"].mean())
    
    except pd.errors.EmptyDataError:
        raise ValueError("CSV file is empty")
    except Exception as e:
        raise RuntimeError(f"Error processing data: {e}")

Key Changes:

The AI generated production-ready Python code with multiple best practices: (1) Type hints for all parameters and return value (str, int, Optional[float]), (2) Comprehensive docstring following Google style with Args, Returns, and Raises sections, (3) Pathlib for modern file path handling instead of os.path, (4) Input validation checking file existence and required columns, (5) Proper exception handling with specific error types, (6) Defensive programming checking for empty DataFrame, (7) Clear variable names (filtered_df, age_threshold), (8) Default parameter value for flexibility. The code follows PEP 8 standards, includes error messages for debugging, and handles edge cases like empty files or missing columns. Ready for immediate use in data analysis pipelines.

Example 2: Web API Function

Description Input
Plain English:
"Create an async function that fetches user data from a REST API,
retries 3 times on failure with exponential backoff,
and returns JSON data or raises an exception."
Generated Python Output
import asyncio
import aiohttp
from typing import Dict, Any
from aiohttp import ClientSession, ClientError
import logging

logger = logging.getLogger(__name__)

async def fetch_user_data(
    user_id: int,
    api_url: str = "https://api.example.com/users",
    max_retries: int = 3,
    base_delay: float = 1.0
) -> Dict[str, Any]:
    """
    Fetch user data from REST API with retry logic.
    
    Implements exponential backoff for failed requests.
    Retries on network errors and 5xx server errors.
    
    Args:
        user_id: Unique identifier for the user
        api_url: Base URL of the API endpoint
        max_retries: Maximum number of retry attempts (default: 3)
        base_delay: Initial delay in seconds for exponential backoff
    
    Returns:
        Dictionary containing user data from API response
    
    Raises:
        ValueError: If user_id is invalid
        ClientError: If all retry attempts fail
    """
    if user_id <= 0:
        raise ValueError("user_id must be positive integer")
    
    url = f"{api_url}/{user_id}"
    
    async with ClientSession() as session:
        for attempt in range(max_retries):
            try:
                async with session.get(url, timeout=aiohttp.ClientTimeout(total=10)) as response:
                    # Raise for 4xx client errors (no retry)
                    if 400 <= response.status < 500:
                        response.raise_for_status()
                    
                    # Success case
                    if response.status == 200:
                        data = await response.json()
                        logger.info(f"Successfully fetched user {user_id}")
                        return data
                    
                    # Retry for 5xx server errors
                    if response.status >= 500:
                        raise ClientError(f"Server error: {response.status}")
            
            except (ClientError, asyncio.TimeoutError) as e:
                if attempt == max_retries - 1:
                    logger.error(f"Failed to fetch user {user_id} after {max_retries} attempts")
                    raise
                
                # Exponential backoff: 1s, 2s, 4s
                delay = base_delay * (2 ** attempt)
                logger.warning(f"Retry {attempt + 1}/{max_retries} after {delay}s: {e}")
                await asyncio.sleep(delay)
        
        raise ClientError(f"Max retries ({max_retries}) exceeded for user {user_id}")

Key Changes:

The AI generated sophisticated async Python code with production-grade patterns: (1) Async/await for non-blocking I/O operations, (2) aiohttp for efficient HTTP requests, (3) Type hints with Dict[str, Any] for JSON responses, (4) Exponential backoff algorithm (1s, 2s, 4s delays), (5) Differentiated error handling (no retry for 4xx, retry for 5xx), (6) Timeout configuration (10 seconds) to prevent hanging, (7) Context manager for automatic session cleanup, (8) Structured logging with info/warning/error levels, (9) Input validation for user_id, (10) Configurable parameters with sensible defaults. The code handles edge cases like network failures, timeouts, and server errors. Follows Python async best practices and is ready for production microservices or data pipelines requiring resilient API communication.

Frequently Asked Questions

What type of Python code can the AI generate?

The AI generates various Python code types: data analysis scripts (pandas, numpy), web scraping (BeautifulSoup, Selenium), automation scripts, REST API clients, Flask/Django web apps, machine learning models (scikit-learn, TensorFlow), file processing, database operations (SQLAlchemy, psycopg2), async operations, CLI tools (argparse, click), and utility functions. It follows PEP 8 style guide and includes type hints, docstrings, and error handling.

Does generated code include best practices?

Yes. Generated Python code follows PEP 8 standards, includes type hints for Python 3.6+, comprehensive docstrings (Google/NumPy style), proper exception handling with try-except blocks, context managers for resource management, list comprehensions for conciseness, generator expressions for memory efficiency, f-strings for formatting, pathlib for file operations, and logging instead of print statements for production code.

Can it generate code for specific Python frameworks?

Yes. The AI generates framework-specific code: Flask/Django for web apps (routes, models, templates), FastAPI for modern APIs, pandas/numpy for data analysis, scikit-learn/TensorFlow for ML, Selenium/BeautifulSoup for web scraping, SQLAlchemy for databases, Celery for task queues, pytest for testing, and asyncio for concurrent programming. Specify the framework in your description for accurate code generation.

Related Tools